Heat shock protein expression pattern (HSP70) in the hydrothermal vent mussel Bathymodiolus azoricus.
نویسندگان
چکیده
We previously reported evidence of increased levels of DNA damage in the hydrothermal mussel Bathymodiolus azoricus, which suggested that the species was not fully resistant to the natural toxicity of its deep-sea vent environment. In the present study, HSP70 was used as a biomarker of sub-cellular stress. Differences in HSP70 expression pattern were observed between vent sites, typified by different depths/toxicity profiles, and between different mussel tissue types. A comparison of specimens collected by remote operated vehicle (ROV) and acoustically-operated cages showed that less stress (as indicated by changes in HSP70 levels) was induced by the faster cage recovery method. Therefore alternatives to ROV collection should be considered when planning experiments involving live deep sea organisms. Significantly, a positive correlation was found between the levels of DNA strand breakage, as measured using the Comet assay, and HSP70 expression pattern; evidence was also obtained for the constitutive expression of at least one HSP isoform which was located within the cell nucleus.
منابع مشابه
Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus.
The variability of the bioaccumulation of metals (Ag, Cd, Cu, Fe, Mn and Zn) was extensively studied in the mussel Bathymodiolus azoricus from five hydrothermal vent sites inside three main vent fields of increasing depth along the Mid-Atlantic Ridge: Menez Gwen, Lucky Strike and Rainbow. Metal bioaccumulation varied greatly between vent fields and even between sites inside a vent field with B....
متن کاملGlobal depression in gene expression as a response to rapid thermal changes in vent mussels.
Hydrothermal vent mussels belonging to the genus Bathymodiolus are distributed worldwide and dominate communities at shallow Atlantic hydrothermal sites. While organisms inhabiting coastal ecosystems are subjected to predictable oscillations of physical and chemical variables owing to tidal cycles, the vent mussels sustain pronounced temperature changes over short periods of time, correlated to...
متن کاملA dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge.
Bathymodiolus azoricus and Bathymodiolus puteoserpentis are symbiont-bearing mussels that dominate hydrothermal vent sites along the northern Mid-Atlantic Ridge (MAR). Both species live in symbiosis with two physiologically and phylogenetically distinct Gammaproteobacteria: a sulfur-oxidizing chemoautotroph and a methane-oxidizer. A detailed analysis of mussels collected from four MAR vent site...
متن کاملThe Transcriptome of Bathymodiolus azoricus Gill Reveals Expression of Genes from Endosymbionts and Free-Living Deep-Sea Bacteria
Deep-sea environments are largely unexplored habitats where a surprising number of species may be found in large communities, thriving regardless of the darkness, extreme cold, and high pressure. Their unique geochemical features result in reducing environments rich in methane and sulfides, sustaining complex chemosynthetic ecosystems that represent one of the most surprising findings in oceans...
متن کاملChanges of gill and hemocyte-related bio-indicators during long term maintenance of the vent mussel Bathymodiolus azoricus held in aquaria at atmospheric pressure.
The deep-sea hydrothermal vent mussel Bathymodiolus azoricus has been the subject of several studies aimed at understanding the physiological adaptations that vent animals have developed in order to cope with the particular physical and chemical conditions of hydrothermal environments. In spite of reports describing successful procedures to maintain vent mussels under laboratory conditions at a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Marine environmental research
دوره 64 2 شماره
صفحات -
تاریخ انتشار 2007